
CoSort Version 9.5
Big Data Manipulation

Software Overview, Interface Samples, Technical Specifications

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 1

TABLE OF CONTENTS

AN INTRODUCTION TO COSORT...3

COSORT APPLICATIONS...4

COMPATIBLE APPLICATIONS...6

COSORT CONTENTS...8

SORT CONTROL LANGUAGE PROGRAM (SORTCL)..10

COSORT WORKBENCH...25

SORTCL COMMAND SET..29

METADATA CONVERSION TOOLS ...30

UNIX SORT REPLACEMENT (BIN/SORT)...31

SORT INTERACTIVE PROGRAM (SORTI)..33

COBOL MIGRATION TOOLS..35

APPLICATION PROGRAMMING INTERFACES (APIs) ..36

SYSTEM TUNING...38

TECHNICAL SPECIFICATIONS..40

LICENSING INFORMATION...47

COMPANY BACKGROUND..48

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 2

AN INTRODUCTION TO COSORT

Since 1978, CoSort has been meeting the growing data manipulation needs of companies
with high-volume flat-file, database and data warehouse installations. CoSort is also a
favored solution for legacy sort and data migrations to Unix and Windows. IRI has worked to
make CoSort the most widely licensed commercial sort product on open systems, and is
heavily focused on the development of related data manipulation technologies. CoSort is
now a performance-enhancing solution for many applications, and a single-pass platform for
large-scale:

• Data Processing
• Data Presentation
• Data Protection
• Data Prototyping

Data Processing
CoSort’s Sort Control Language (SortCL) program can execute parallel data transformations
to integrate, stage, and convert large data volumes. In just one I/O pass and job script,
SortCL can:

select, sort/merge, join, lookup, convert data types and file formats,
re-map/reformat, sequence, calculate, aggregate, manage sub-strings,
scrub, encrypt, de-identify, and perform complex transforms

Sources and targets include compressed, flat and index files, pipes, tables via Open
Database Connectivity (ODBC), and custom procedures.

Data Presentation
SortCL users can output the results of the above processes into one or more detail and
summary reports. Users can combine joins, cross-calculations, hash lookups, and
conditional selection to generate formatted reports and subsets for: billing operations,
customer segmentation, change data capture, forensic data analysis, and business
intelligence tools. Formatting may include special field and file layouts, headers and footers,
page numbers, environment values, embedded HTML tags (for web posting), and the
conversion of data into CSV or XML for dashboard use.

Data Protection
SortCL, and the spin-off data masking product (FieldShield), can secure sensitive data at
the field level, based on business rules. Functions include 256-bit AES format-processing
encryption and de-identification, and data masking techniques to anonymize, obfuscate,
pseudonymize, or redact fields. Additional encryption or security functions are also available
through custom field transforms. Securing data at the field level (during or after processing
and presentation) is faster, and leaves non-sensitive file, disk and database data available.

Data Prototyping
SortCL, and the spin-off test data product (RowGen), can randomly create or select test
field data and display it in real (production) file and report formats. You can create any
number, type, and size of files, records and value ranges necessary to safely simulate reality
and stress-test applications. Uses include database and ETL tool population, benchmarking,
application development, and outsourcing.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 3

COSORT APPLICATIONS

CoSort is a general-purpose, high-performance processor of sequential data in a variety of
formats. It also serves as a migration platform for legacy sorts, files, and data types, and
supports business intelligence, ETL, and data governance operations. CoSort reduces
runtimes, risks, and complexity for a variety of IT stakeholders.

Job
Function

CoSort Deliverables and Benefits

IT Manager • Legacy sort software migration and modernization tools
• Universal flat-file format, and data type, conversion capabilities
• Detail and summary batch reporting with optional dashboard
• Codes and runs faster than Perl, shell, SQL, ETL and COBOL jobs
• Affordable price points and flexible licensing policies

DBA • Parallel pre-sorts improve load, reorg and query performance
• Combined sort, join, and aggregate transformations off-line
• External batch and delta reports that are faster/easier than SQL
• Flat-file lookups offer discrete, off-line, one-to-many solutions
• Shared metadata with Fast Extract, FieldShield and RowGen

Data
Warehouse
(ETL)
Designer

• Plug-in sort accelerators for DataStage and Informatica
• Multi-threaded transformations in the file system for data staging
• Complex selection and expression logic for data integration
• Easy, open metadata and converters interface with existing tools
• Integrated protection, custom transforms, and in/out procedures

BI Architect • Large file aggregation and filtering franchises data for BI tools
• Batch reporting with many formatting functions, including PCRE
• Join, select, encrypt, and report for safe customer segmentation
• Web log and IPA data handling facilitate click-stream analyses
• Change data capture (delta) reporting using joins and selection

CISO, Data
Governance,
or
Compliance
Officer

• Field-level anonymization, de-id, encryption, pseudonymization
• Protection functions can run within transform and reporting jobs
• Query-ready XML audit log of job details help verify compliance
• Quality and safety improvements for Master Data held in flat files
• Support for 24 of 34 COBIT 4.0 control objectives

Application
Developer
(ISV)

• Thread-safe API libraries for embedded parallel sorts, transforms
• Serial and parallel system calls to the SortCL program
• Access to included encryption libraries protect real-time data flows
• Built-in test data generation capabilities (“RowGen” functionality)
• Affordable licensing, customized to individual business models

Figure 1 on the following page depicts the CoSort product flow diagram for fast, single-pass
data manipulation.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 4

Figure 1 Fast Single-Pass Data Manipulation

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 5

COMPATIBLE APPLICATIONS

These other IRI tools create or leverage the metadata of CoSort’s SortCL program:

Fast Extract
(FACT)

Unloads large database tables to flat files in parallel for off-line archival,
data transformation, reporting, migration, and reloads. FACT can work
through metadata and pipes with CoSort's SortCL tool to perform fast
reorg, replication, encryption, ETL, and BI operations, all in one I/O
pass.

Data masking
(FieldShield)

Protects personally identifying information and other sensitive data
residing in ODBC-connected database tables or popular file formats
using various techniques such as encryption, obfuscation of data, and
pseudonymization.

Test Data
(RowGen)

Creates safe test data in real file, report, and table formats for DB
population, application development, benchmarking, etc. The same
SortCL scripts used to process real data can be used to generate test
data in the same formats.

Data Migration
(NextForm)

Converts file formats and field data types for data, application, and
platform migration projects.

The following are examples of third-party products with which IRI maintains various levels
of compatibility to enhance their operational performance or personal data privacy:

Oracle CoSort can source and target Oracle tables via ODBC or the file system
(using FACT and SQL*Loader). On this data, CoSort can:

• transform (sort, join, aggregate, reformat, etc.)
• capture changed data (generate delta reports)
• protect (column-level encryption, masking, etc.)
• perform index pre-sorts (on the longest table key)

By pre-sorting, CoSort can improves the speed and efficiency of SQL
Loader operations, and thus reorgs and queries. Oracle index creation
and queries work faster on large pre-CoSorted tables. With the space
and time saved by offloading transforms and accelerating SQL Loader,
DBAs can also create and maintain more tables -- in multiple query
orders.

IBM DB2 UDB CoSort can source and target Oracle tables via ODBC or the file system
(using FACT and DB2 Load), to do the jobs above. The CoSort Load Ac-
celerator for DB2 (CLA4DB2) speeds bulk loads.

IBM InfoSphere
DataStage

CoSort's unique sort Stage plug-in for DataStage Server Edition can
improve sort performance up to 10 times with no interface changes.
Subsequent join, aggregation and load stages benefit. Alternatively,
running CoSort's SortCL program in the sequential file stage can en-
hance DataStage sort, join, and aggregation goals by running large
transforms in fewer, faster, external passes. In SortCL, these
transforms can also be combined with conversion, reporting, field
protection, and load functions at the same time.

Informatica
PowerCenter

CoSort's unique custom transform (CT) for PowerCenter's sort seam-
lessly replaces the native SorterTx component to improve its
performance. Subsequent join, aggregation and loads benefit. IRI
recommends, however, performing “push out” optimization of large
transformation jobs by allowing CoSort's SortCL program to perform
them in the file system. This approach is more efficient than “push-
down optimization” into Oracle (DB layer transforms) and far less
expensive than Teradata, AbInitio, or DMExpress.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 6

http://www.cosort.com/products/FACT
http://www.iri.com/solutions/ETL_DB_Acceleration/Informatica
http://www.iri.com/solutions/ETL_DB_Acceleration/Informatica
http://www.iri.com/solutions/ETL_DB_Acceleration/DataStage
http://www.iri.com/solutions/ETL_DB_Acceleration/DataStage
http://www.iri.com/solutions/ETL_DB_Acceleration/DB2
http://www.iri.com/solutions/ETL_DB_Acceleration/Oracle
http://www.iri.com/products/NextForm
http://www.cosort.com/products/RowGen
http://www.iri.com/products/FieldShield

BI Dashboard

While CoSort's SortCL tool can simultaneously filter, transform, protect, and convert massive
files, its reporting capabilities are two-dimensional. The next level of activity and
sophistication in business intelligence is often the creation and customization of interactive
dashboards.

Dashboards help you derive insight and knowledge from raw data, but they first require
relevant data subsets in compatible formats like CSV and XML, since they are not designed
to handle large, raw data volumes effectively. IRI has partnered with a leader in digital
dashboard technology to feed data from CoSort's Sort Control Language (SortCL) program
into state-of-the-art visual presentations.1

By combining high-volume data staging jobs with the iDashboard application, you can:
1) translate raw data into graphical business intelligence
2) integrate SortCL and other application outputs with ODBC sources
3) help unify and direct diverse departments to business goals and action
4) import and export Excel spreadsheet data and display preferences

iDashboard is very user friendly and uses patented "Visual Intelligence" technology. It allows
you to customize your views using a library of chart types, including: tables, 3-D views,
geographic maps, metric tickers, animated speedometers, and ad hoc data displays:

Figure 2 iDashboard Interface

Given iDashboard's ability to create insight and knowledge from raw data, the applications
are as diverse as an organization's needs, for example:

1 IRI is a registered reseller of iDashboards™ technology, and as such, can offer a discounted bundle
of this software along with, or separately from, CoSort licenses.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 7

• Balanced Scorecard • Market Research & Analysis
• Supply Chain Management • Enterprise Resource Planning
• Process and Quality Control • Financial Intelligence
• Sales & Marketing Intelligence • Executive Reporting
• Facility Performance • IT Systems Monitoring
• Project Management • Service Level Agreement

COSORT CONTENTS

The CoSort package contains standalone utilities, file layout metadata and sort parameter
converters, third-party sort replacements, API libraries, and documentation.

The core utility programs in CoSort are:

• SortCL – a fourth-generation sort control language program for defining data and
manipulations with syntax and semantics familiar to both mainframe sort and SQL
users. The most comprehensive interface in the CoSort package, SortCL combines
multi-file, multi-format data transformation functions (such as sorting, joining,
aggregation and re-mapping) with reporting and field-level protections for: file
compares and changed data capture, data type and file format conversions, data
warehouse integration and staging (flat file ETL), business intelligence, delta and
summary reporting, and compliance with data privacy regulations.

• Sort – a drop-in replacement for the Unix sort command that runs faster and scales
linearly. It runs on all Unix and Windows (unixsort.exe) platforms.

• SortI – a user-friendly sort interactive session for simple sort/merge jobs. SortI
offers context-sensitive help during the specification of ad hoc and batch jobs.

SortI and SortCL recognize environment variables and support pipes to allow data to flow
between processes without additional I/O. SortI and SortCL may also be customized with
user exits; such as procedures for special input, output, or comparison criteria. Usage
instructions for each utility are in the user manual and man pages.

These metadata converters leverage your existing input and output layouts:

• cob2ddf translates COBOL copybook layouts to SortCL data definitions
• csv2ddf translates Microsoft .csv file headers to SortCL data definitions
• ctl2ddf translates Oracle SQL*Loader control file layouts to SortCL data definitions
• elf2ddf translates web logs in W3C "Extended Log Format" to SortCL data definitions
• ldif2ddf translates LDIF layouts to SortCL data definitions
• xml2ddf translates XML formats to SortCL data definitions
• MIMB (from MITI) translates many application file layouts to SortCL data definitions
• odbc2ddf converts database table layouts into a SortCL data definition file (.ddf).

These sort parameter conversion utilities facilitate legacy sort migrations:

• mvs2scl translates MVS JCL sort cards to SortCL job specifications
• sorti2scl translates SortI parameters to SortCL job specifications
• vse2scl translates VSE JCL sort cards to SortCL job specifications

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 8

CoSort Workbench, a graphical user interface (GUI) built on Eclipse, facilitates the
specification, execution, tuning and maintenance of SortCL job scripts through job creation
and metadata definition wizards, a dynamic job outline, and a syntax-aware editor for
manual SortCL specification.

The CoSort Workbench also provides database data access, viewing, and integration into
SortCL jobs, and includes extensions for team contributions, job version control, and remote
system data sourcing.

The following third-party sort replacements are available with the CoSort package:

• acu-cosort – a drop-in replacement for the sort verbs supplied with ACUCOBOL-GT
• cla4db2 – the “CoSort Load Accelerator for DB2” replaces IBM’s sort routine within

the UDB 5-8 loader, as much as doubling throughput on Unix
• mf-cosort – a drop-in replacement for the sort verbs supplied with Micro Focus Net

Express, Server Express, and Workbench on Unix and Windows. COBOL users can
link statically or dynamically to mfcosort and the CoSort engine to accelerate sort
speed and reduce temporary sort space in new executables or a full RTS

• nat-sort – a drop-in replacement for the sort verb in Software AG Natural
• proc-sort – SAS System 7-9 users can link dynamically to shared cosort() libraries

to replace the sort function in SAS on Unix systems
• Sorter Tx CT – a drop-in custom transform for the sort in Informatica PowerCenter
• Sort PlugIn– a drop-in replacement for the IBM Infosphere DataStage SE sort.

CoSort provides similar drop-in sort replacement facilities for Tetrad OPX, and the UniKix
Mainframe Batch Manager. CoSort hooks are also available for The ETI Solution, Kalido’s
Dynamic Information Warehouse, and IDS Korea’s TeraStream ETL suite.

For developer and Independent Software Vendor (ISV) use, CoSort also includes two
Application Programming Interface (API) libraries.

• cosort_r() – A thread-safe version of the original cosort() API that allows multiple
coroutine sort/merge operations to occur in the same pass through the data. The
coroutine engine allows in-memory record transfers between programs and the sort.

• sortcl_routine() – The thread-safe SortCL library that allows programmers to
exploit the full range of CoSort Sort Control Language commands within their own
programs.

CoSort APIs let you define any input (selection), compare (order sequence), or output
(reporting) criteria, enabling applications to accomplish complex jobs in one I/O pass. You
can write calls to either library in any language that can link to a C library, such as C++,
COBOL, VB, Java, etc.

Finally, the CoSort package also includes the following documentation:

• Installation Guide – platform-specific loading, licensing, and tuning advice
• Manual – full user and programmer documentation for all the above interfaces
• man pages – in original .man format, as well as .cat and .help versions for Unix and

Windows systems, respectively
• Job Examples – sample SortCL job scripts, metadata conversions, and API calls

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 9

SORT CONTROL LANGUAGE PROGRAM (SORTCL)

Well beyond traditional sort/merge operations, CoSort provides a broad range of flat-file
manipulation and management functions for data warehousing, legacy migration, and
business intelligence projects through its fourth-generation Sort Control Language (SortCL)
program. SortCL is a language, program, tool and library that allows end-users and
developers alike to:

Filter At the byte, field and record level
Segment Conditional (include/omit) selection
Sort Multiple keys, directions, sequences
Merge Pre-sorted files
Join Un/sorted files over many conditions
Re-map Resize, reposition, and realign fields
Convert Change data types (for example, EBCDICASCII, PackedNumeric)
Re-format /
Interchange

Convert between file formats (for example, TextXML, VSRS, Micro
Focus ISAMAcucobol Vision, LDIFCSV, MFVLText)

Aggregate Parallel roll-up and drill-down sum, min, max, average, and count values.
Accumulation. Ranking.

Calculate Expressions and functions across detail and summary rows
Sub-string Perl-compatible regular expression (PCRE) logic for pattern matching and

other intra-field manipulations
Validate Check and realign characters to specifications (for example, “isdigit")
Sequence For indexing and loading operations
Lookup Discrete field substitutions, pseudonymization, etc. using "SET" file field

dimensions
Protect Encrypt data at the field level and audit data security measures, plus

anonymization, de-identification, filtering, pseudonymization
Report Custom-formatted, segmented detail, delta, and summary targets
Transform Custom field-level user functions (for example, data quality libraries)
Log XML audit trail records job specs for compliance verification, etc.

SortCL also provides for all in one job script and I/O pass through multiple data sources and
targets.2

By running multiple data manipulations at once, you can use SortCL to:

• Replace slower 3GL, shell, Perl and SQL procedures
• Transform high volumes outside BI, DB and ETL tools
• Relieve application and system overhead
• Filter, integrate, and stage large data volumes
• Generate custom reports and hand-offs
• Accelerate bulk database reorgs and loads
• Detect, capture, and audit changed data
• Combine data privacy with transformation and reporting

2 With IRI’s Fast Extract (FACT) unload tool, bulk input can also come directly from RDBMS tables.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 10

SortCL uses a self-documenting Data Definition Language (DDL) and Data Manipulation
Language (DML) syntax that is familiar to both mainframe sort and SQL users. By
supporting the separation of data definition and manipulation statements, SortCL supports
the use of shared metadata, and the independence of data from applications.

SortCL job scripts can be invoked from: the command line, the CoSort Workbench, a batch
processing stream, or the thread-safe SortCL API (sortcl_routine).

Application-level statistics can be output with each job, either to the screen or a file. In
addition, the CoSort job log runs in a self-appending file, and debugging information in a
self-replacing file. On-screen monitoring optio
ns are available at various verbosity levels for runtime progress assessment. You can also
enable and secure an XML audit trail for validating compliance and performing forensic
application and data analyses.

Users converting from legacy sort products can leverage CoSort’s metadata conversion tools
and services to ease job script migrations to SortCL. See METADATA CONVERSION TOOLS.

SortCL Operations
One of the most basic SortCL scripts that you can write contains only an infile and an
outfile, as in the following:

/infile=accts695
/outfile=accts695.new

This re-orders the accounts695 file from left to right without reformatting.

SortCL processes data in three phases -- input, action (processing), and output. In the input
phase, source records are processed with selection. Actions are sort, merge, join, report, or
check. In the output phase, selected records are remapped to one or more targets
simultaneously. Derived fields and multiple formats can be defined in the same file. A
special “inrec” section is defined when a virtual record layout is needed for processing input
sources that are formatted differently.

However, SortCL also has the ability perform and combine many more data transformations,
as well as protect data at risk, and produce formatted reports, all at the same time.
Through the use of metadata repositories -- SortCL data definition files – you can define and
share any structured data subset, or relational view, in SortCL job specification files. Those
file layouts can be re-used in many applications.

SortCL Application Sample #1 – Sort and Reformat, Metadata Repository
This SortCL job is a simple two-key sort job. A single, flat input file is specified directly in
the script. In addition to re-ordering the data, this script will convert the file layout from a
pipe-delimited format to fixed position fields. Notice, however, that the fixed output field
definitions are stored in this reusable SortCL “data definition file” metadata repository:

Data Definition file “chiefs.ddf”

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 11

 /FIELD=(president,POS=1,SIZE=22)
 /FIELD=(service,POS=25,SIZE=9)
 /FIELD=(state,POS=40,SIZE=2)
 /FIELD=(party,POS=45,SIZE=3)

Eisenhower, Dwight D.|134|1953-1961|REP|
TX
Kennedy, John F.|135|1961-1963|DEM|MA
Johnson, Lyndon B.|136|1963-1969|DEM|TX
Nixon, Richard M.|137|1969-1973|REP|CA
Ford, Gerald R.|138|1973-1977|REP|NE
Carter, James E.|139|1977-1981|DEM|GA
Reagan, Ronald W.|140|1981-1989|REP|IL
Bush, George H.W.|141|1989-1993|REP|TX
Clinton, William J.|142|1993-2001|DEM|AR
Bush, George W.|123|2001-2009|REP|TX

Input file 1, “chiefs_10_sep”

As shown above, the job script on the right uses explicit layouts for the input, but relies on the
metadata file, chiefs.ddf, for the output layout. By centralizing the metadata, it can be used in other
SortCL job scripts.

SortCL job scripts are typically run from a batch script, with a command entry similar to:

$COSORT_HOME/bin/sortcl /spec=/path2/example1.scl

Output file 1, “chiefs.out”

The input file, chiefs_10_sep is now in order by party and president, and displayed
according to the fixed position layout specified in chiefs.ddf. Notice that the second input
field, votes, was not in the output file specification, and that the state and party field were
transposed. By mapping using symbolic field name references, SortCL gives you field level
control of all of your output targets, as the following examples will further demonstrate.

SortCL Application Sample #2 – Data Transformation and Protection
This SortCL job is an example of a single-key sort. The fields are defined in the input phase,
the sort key in the action phase, and then, in the output phase a series of target files are
defined in different formats for different departmental purposes. Notice how individual fields
are protected according to different business rules, or role based access controls (RBAC).

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 12

CoSort SortCL Job Specification
example1.scl Copyright 2011 IRI
Input Phase
/INFILE=chiefs_10_sep

/FIELD=(president,POS=1,SEP='|')
/FIELD=(votes,POS=2,SEP='|')
/FIELD=(service,POS=3,SEP='|')
/FIELD=(party,POS=4,SEP='|')
/FIELD=(state,POS=5,SEP='|')

Action Phase
/SORT

/KEY=party
/KEY=president

Output Phase
/OUTFILE=chiefs.out
 /SPEC=chiefs.ddf # metadata

Carter, James E. 1977-1981 GA DEM
Clinton, William J. 1993-2001 AR DEM
Johnson, Lyndon B. 1963-1969 TX DEM
Kennedy, John F. 1961-1963 MA DEM
Bush, George H.W. 1989-1993 TX REP
Bush, George W. 2001-2009 TX REP
Eisenhower, Dwight D. 1953-1961 TX REP
Ford, Gerald R. 1973-1977 NE REP
Nixon, Richard M. 1969-1973 CA REP
Reagan, Ronald W. 1981-1989 IL REP

The input file below was generated with IRI’s RowGen tool to create realistic transaction
data. Note that any number of sources can be input and that these input sources can have
any number of formats. The input sources can be files, pipes, and/or procedures. Data in-
tegration of this kind was not demonstrated for the sake of simplicity.

Input file, “seqdata”

The job script below produces several output files in the same job script and I/O pass,
which includes all 10 records from the above input files (though filters could have been
applied).

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 13

CoSort v9.5.1 Copyright 2011 IRI, Inc.###
Sort Control Language (SortCL) Program

Job Controls Phase
Load encryption library for integrated protection
/LIBRARY="C:\IRI\CoSort95\lib\libcscrypt.dll"

Input Phase
/INFILE=(seqdata) # Reads 1 input file
 /FIELD=(idnum,POS=1,SIZE=2) # Unique record identifier tag
 /FIELD=(ssno,POS=4,SIZE=9)
Overdefines the social security number into parts for obfuscation
 /FIELD=(ssno_part1,POS=4,SIZE=1)
 /FIELD=(ssno_part2,POS=5,SIZE=4,NUMERIC)
 /FIELD=(ssno_part3,POS=9,SIZE=4,NUMERIC)
 /FIELD=(name,POS=14,SIZE=20)
Defines the last name letter field for conditional selection
 /FIELD=(last_name_letter,SEP=' ',POS=4,SIZE=1)
 /FIELD=(salary,POS=36,SIZE=10,NUMERIC)
 /FIELD=(salary2,POS=36,SIZE=10) # Redefined as ASCII for encryption
 /FIELD=(deduction_no,POS=47,SIZE=1)
 /FIELD=(state,POS=49,SIZE=2)
 /FIELD=(address,POS=52,SIZE=20)
 /FIELD=(group_code,POS=75,SIZE=1)
 /FIELD=(wholerec,POS=1,SIZE=71) # Define a field to be the entire record

Action Phase
/SORT
 /KEY=(group_code) # Sort on code field for aggregation
 /KEY=(salary) # Sort on salary field

01 330170363 Stuart Clay 0056681.42 6 cT 101 B St B
02 421901269 Taylor Guerrero 0015019.10 9 MD 1031 Park Ln Apt D A
03 529433545 Charles Caldwell 0041116.71 3 NY 14 Main St A
04 129737773 Robyn Puckett 0044558.62 3 ny 822 Hwy 76 B
05 594521240 Santiago Lindsey 0055836.11 0 TX Star Rt Box 822 A
06 796569799 Charles Lindsey 0098525.58 2 TX 12746 Wolf Circle A
07 384127387 Santiago Puckett 0059036.80 4 NY 321 Baltic Ct B
08 711604065 Charles Williams 0018645.95 1 Tx 1103 Fresh Creek Ln A
09 343054521 Jack Velazquez 0029205.44 2 NY 6780 Sand Dr Apt 3A B
10 148354977 Donald Cooke 0044121.44 4 MA 35 La Palma Dr A

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 14

Output Phase
/OUTFILE=testdata # First Output File. Obfuscates data, preserves format
 /FIELD=(idnum,POS=1,SIZE=2.0,FILL='0',NUMERIC)
 /FIELD=(ssno_part1,POS=4,SIZE=1)
Obfuscate the next 4 digits through conditional cross-calculation
 /FIELD=(ssno_part2_new,POS=5,SIZE=4.0,FILL='0',NUMERIC,\
 IF ssno_part2 GT 4500 THEN ssno_part2 / 2 ELSE 2 * ssno_part2 - 55)
Obfuscate the final 4 digits
 /FIELD=(ssno_part3_new,POS=9,SIZE=4.0,FILL='0',NUMERIC,\
 IF ssno_part3 GT 4500 THEN ssno_part3 / 2 ELSE 2 * ssno_part3 - 54)
Create pseudonym of the real name using the lookup table pseudo.set
 /FIELD=(name_fake,POS=14,SIZE=20,SET=pseudo.set[name])
Make the salaries anonymous using conditional cross-calculation
 /FIELD=(salary_new,POS=35,SIZE=10.2,NUMERIC, \
 IF salary GT 50000.00 THEN 0.85 * salary ELSE 1.15 * salary)
 /FIELD=(deduction_no,POS=46,SIZE=1)
 /FIELD=(state,POS=48,SIZE=2)
 /DATA=" "
 /DATA={20}"*" # Masks address data with asterisks

/OUTFILE=aggregate_salaries_by_group # Summary record format
 /FIELD=(total_salary,POS=51,SIZE=12,CURRENCY)
 /SUM total_salary FROM salary BREAK group_code
/OUTFILE=aggregate_salaries_by_group # Detail record format
 /FIELD=(group_code,POS=1,SIZE=1)
 /FIELD=(name,POS=3,SIZE=20)
 /FIELD=(address,POS=25,SIZE=20)
 /FIELD=(TOUPPER(state),POS=47,SIZE=2) # Capitalization function
 /FIELD=(salary,POS=51,SIZE=12,CURRENCY)

/OUTFILE=salaries_de_id
De-identify fields using bit manipulation function (to preserve field size)
 /FIELD=(idnum,POS=1,SIZE=2.0,FILL='0',NUMERIC)
 /FIELD=(de_identify(salary,"abc"),POS=6,SIZE=10,NUMERIC)
 /FIELD=(TOUPPER(state),POS=20,SIZE=2)

/OUTFILE=encrypt_all
 /FIELD=(encryptAES256(wholerec),POS=1) # Default key phrase used

/OUTFILE=encrypt_2fields
Encrypt 2 fields, each with a different key phrase
To determine the size of the encrypted output field:
Increase field size to next multiple of 16 and divide by 3
Round up to the next whole number and multiply by 4

 /FIELD=(encryptAES256(ssno,"passphr1"),POS=1,SIZE=24)
 /FIELD=(name,POS=26,SIZE=20)
 /FIELD=(encryptAES256(salary2,"passphr2"),POS=47,SIZE=24)
 /FIELD=(TOUPPER(state),POS=73,SIZE=2)

/OUTFILE=report.csv
 /PROCESS=CSV # Creates header from fieldnames
 /FIELD=(idnum,POS=1,SEP=',',FRAME='"')
 /FIELD=(ssno,POS=2,SEP=',',FRAME='"')
 /FIELD=(name,POS=3,SEP=',',FRAME='"')
 /FIELD=(salary,POS=4,SEP=',',FRAME='"')
 /FIELD=(deduction_no,POS=5,SEP=',',FRAME='"')
 /FIELD=(state,POS=6,SEP=',',FRAME='"')
 /FIELD=(address,POS=7,SEP=',',FRAME='"')
 /FIELD=(group_code,POS=8,SEP=',',FRAME='"')

This job script turns the two input files into six output files, all in one I/O pass. Many more
inputs or outputs, of any size and format, could have been specified, and conditional
selection criteria could have be applied against any source or target. A number of additional
field level transformation functions could also have been specified. For a more complete list
of available data manipulation functions that can be performed in SortCL, see the
TECHNICAL SPECIFICATIONS chapter.

Outputs from the sample above follow, along with explanations of each.

Output file 1, “testdata”

This file shows safe, protected results in the form of similarly formatted test data. The data
are sorted on group_code and then salary prior to the salary being protected; therefore, the
salary order will not appear to be ordered. Note that the social security numbers were
obfuscated with expression logic defined in 2 lines of the SortCL script Part 2 is shown
below:

 /FIELD=(ssno_part2_new,POS=5,SIZE=4.0,FILL='0',NUMERIC, \
 IF ssno_part2 GT 4500 THEN ssno_part2 / 2 \
 ELSE 2 * ssno_part2 - 55)

and that names were de-identified with pseudonyms in a look-up table called pseudo.set:

/FIELD=(name_fake,POS=14,SIZE=20,SET=pseudo.set[name])

SET file, “pseudo.set”

In the above set file, the ‘real name’ Charles Caldwell is identified with the ‘fake name’
Teddy Black, and so on. A tab character separates the two names in the lookup table.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 15

Charles Caldwell Teddy Black
Charles Lindsey Landen Sullivan
Charles Williams Jeffery Gomez
Donald Cooke Julio Koch
Jack Velazquez Francisco Duffy
Robyn PuckettSalvador Jacobson
Santiago Lindsey Spencer Craig
Santiago Puckett Alvaro Mcleod
Stuart Clay Ramsey Flynn
Taylor Guerrero Clifton Jimenez
/default/

02 443252484 Clifton Jimenez 17271.97 9 MD ********************
08 722658076 Jeffery Gomez 21442.84 1 Tx ********************
03 558317036 Teddy Black 47284.22 3 NY ********************
10 124182488 Julio Koch 50739.66 4 MA ********************
05 547262426 Spencer Craig 47460.69 0 TX ********************
06 748284900 Landen Sullivan 83746.74 2 TX ********************
09 385552260 Francisco Duffy 33586.26 2 NY ********************
04 158913886 Salvador Jacobson 51242.41 3 ny ********************
01 359790672 Ramsey Flynn 48179.21 6 cT ********************
07 342063694 Alvaro Mcleod 50181.28 4 NY ********************

Output salaries were anonymized with math functions (which caused the appearance of
disorder in that field). The TOUPPER syntax applied in the state field converted the input
values to all upper case letters on output; this is one of several built-in data quality
functions. Finally, the last three input fields were redacted and masked with asterisks.

At the same time, this output file (with protected real data) was also produced:

Output file 2, “aggregate_salaries_by_group”

This is a detail and summary report, grouping records by their group code (A or B). Two
same-named /OUTFILE sections were used: one to define the format of the detail records,
and the other for the summary information. The group totals were derived with this syntax:

 /SUM total_salary FROM salary BREAK group_code

Output file 3, “salaries_de_id”

This third output file contains the same information, but without the header record. Salaries
have been de-identified with an internal bit manipulation function using the pass code ‘abc’
(which creates the bit manipulation parameters). This method is akin to, but less secure
than, encryption, but preserves the field size.

Output file 4, “encrypt_all”

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 16

lS7t5h+/s3sUbOs+42pYtkTau2K4kzZMOB4CrvE5QSJes2kvxrYIiWtg3y4VWYT7qIoc/rYwELAux4Gh3Cg9EoWf68OdPh+ATqOJ4xE6/T4=
Xh2nImJY4hBLfwWIDGeR1d0hNCC4Fbtz1UICR31wgr7rQo7byO1fVFGw5mwh+GSbh5OM7icopQ84lNVnODVuw6QpqLJCIpwkrYyjO0wvDFg=
twoxGCkGxWn76wrnHlBMX7V1AdRAqXne1l23i30ljkMhbWkf+K9E6JZ/iJtHElPi90bgeqGJyaXcMRMRHlcQkdV/wLAXJJ2b1Nl6Sz/A8uQ=
O1v4mpIxb+D+egm3MbovHPi1hnlMI67Kmdza38JvfIjEw5/tXLbFC4GllUK1eaaNDYdRuJw8CcV1wf05nJ1wQU5UmXmP8uIqeHW41tFK2Xo=
b7B4w8SWnGaM7gXFC6pGAu1qOwp3aX8vFTkRSmUF57hFLQ9IxmLjd7nqDQKMgPg9SVBvlcB4Jsk13TIL6NKM5J0TCKYIH38aVfcw6cG+LuA=
usnCrehsH109zkzDdCYJnfkTp35IjdgA+p4JXZAF3W4uPlqhieH4fKg5zLxYZPtfA1ThT4oWxNCV9Yb/Ey4m/oTM8CaqFderHAqRQJiqj5c=
e0DUXvL1/axHuLzgxPaCG0w/IT1QKcypks3al9hXCCHGh29yegi3Tp+9/nVGaWxVn/UFBYvuiVOJB1hw9RQuzmJMDsuEnr6zGbpl4gvzrCA=
ysO8dAWoGb2soHkp+W1pML7B2MXR8i5kKjzcHjCnxEqoU5Dtd/GXToy1fuM0CrJfmz3F/oRnlw6YhVlvAc46X+Cr033y0y5eCIrATGFqGkI=
Pe8gYs5l/3z9eQrxobmMo/FHI0c1QboyNy1mtWdWBa4/UekwCssPRnvYh8J17y4PrmE9V94WPTZ3RrL7rijQdz8WzS8ES1taZ/MpVaUJ0Gk=
LR5H66hXx7YtaaNSJRCiwmC2Hssc6YA3VAhSRtUQDWTkF/+vxonCrpR6tP87LphMB/k3hKUD5rxuaJkCLrugfZhD3XiLGDxnuryfOXhPeJo=

A Taylor Guerrero 1031 Park Ln Apt D MD $15,019.10
A Charles Williams 1103 Fresh Creek Ln TX $18,645.95
A Charles Caldwell 14 Main St NY $41,116.71
A Donald Cooke 35 La Palma Dr MA $44,121.44
A Santiago Lindsey Star Rt Box 822 TX $55,836.11
A Charles Lindsey 12746 Wolf Circle TX $98,525.58
 $273,264.89
B Jack Velazquez 6780 Sand Dr Apt 3A NY $29,205.44
B Robyn Puckett 822 Hwy 76 NY $44,558.62
B Stuart Clay 101 B St CT $56,681.42
B Santiago Puckett 321 Baltic Ct NY $59,036.80
 $189,482.28

02 335735<253 MD
08 335:9872<7 TX
03 33855592;5 NY
10 3388545288 MA
05 3377:69255 TX
06 33<:74727: TX
09 334<437288 NY
04 338877:294 NY
01 33799:5284 CT
07 337<3692:3 NY

bUWn/CrhAql4MXNxoy7OkA== Taylor Guerrero 2iyseYtWEd3ESFwE91433Q== MD
8XvhrNe7ecF2DKFZyP4cNw== Charles Williams SK8auRS56YxRWMtLTXEGtg== TX
pHxUwHhkcXW06JEhoDIlJg== Charles Caldwell bCz/W5bEpDpA2KJYDi3xvQ== NY
sAol8DlsqS2viXEMPHullQ== Donald Cooke kpCZLODnoWFht50aH7u2LQ== MA
eGoUczVoZEm95/9eBD8iOQ== Santiago Lindsey 8inKXdYDU4AH9tJx8xlPAg== TX
AJJEKjJuJQErVR726ytkZg== Charles Lindsey Vzm4/kcz/ypUNfWJjBBrcA== TX
2KcftKVKDv+OCaG/FFdJ6w== Jack Velazquez m8MIpOmfPqxtNsO69cV0Mg== NY
QMCKCxi32a9ZL3cYuBwHew== Robyn Puckett qwn2T7pUF/Hu+YPQBThcwg== NY
CcxB9LuMkdAJ0E3rhwDIuA== Stuart Clay Q/bc3I756EPqn3TAYcqOUA== CT
RQVeipLI4xlzvwzskHTE0Q== Santiago Puckett 9i1fjr3CQs0yjuKV/tVCEw== NY

9654-4338-8732-8128 W389-324-33-473-Q Jessica Steffani
2312-7218-4829-0111 H583-832-87-178-P Cody Blagg
8940-8391-9147-8291 E372-273-92-893-G Jacob Blagg
6438-8932-2284-6262 L556-731-91-842-J Just Rushlo
8291-7381-8291-7489 G803-389-53-934-J Maria Sheldon
7828-8391-7737-0822 K991-892-02-578-O Keenan Ross
7834-5445-7823-7843 F894-895-10-215-N Francesca Leonie
8383-9745-1230-4820 M352-811-49-765-N Nadia Elyse
3129-3648-3589-0848 S891-915-48-653-E Gordon Cade
0583-7290-7492-8375 Z538-482-61-543-M Hanna Fay

Here, the entire record was declared as a field and encrypted. You may have noticed that
the encrypted “ciphertext” results contain only printable ASCII characters for printing and
inclusion in text files.

Output file 5, “encrypt_two_fields”

The fifth output file, shown above, encrypts the social security number (SSN) and salary
fields, but with two different pass phrases so the data is protected for different disclosures.

Output file 6, “report.csv”

The last output file above, viewed in a spreadsheet, shows how specifying /PROCESS=CSV
on output automatically adds a header record with the output field names. The conversion
of the source records to a comma-separated framework (including the addition of the
header record) allowed the output target to be read by Excel without additional processing.

SortCL Application Sample #3 – Alpha-Numeric Format-Preserving Encryption
This example uses personal information data, personal_info, including credit card
numbers, driver's license numbers, and names.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 17

0832-9678-1911-0645 R784-107-86-619-Q Jessica Steffani
0835-7171-0577-5699 G156-454-45-303-O Cody Blagg
0789-2128-0461-5374 Q305-118-71-384-Q Jacob Blagg
1591-0561-0417-5772 D344-156-20-555-G Just Rushlo
9296-9613-4710-5436 U751-860-67-075-Y Maria Sheldon
9881-4436-0773-0973 X878-716-85-252-C Keenan Ross
4594-9802-2566-4840 T273-579-67-063-M Francesca Leonie
6514-3079-6147-6828 A617-849-83-864-X Nadia Elyse
9221-6125-6496-9606 S039-406-12-369-U Gordon Cade
1404-8512-8389-2619 K379-587-05-591-C Hanna Fay

The following SortCL script encrypts the credit card and driver's license number fields, while
preserving the field formats.

This produces personal_info_encrypted:

SortCL Application Sample #4 – Data Transformation and Reporting
This example uses stock trading data. It performs a full outer join of two differently
formatted input files to produce three differently formatted targets. The script includes
cross-calculation, aggregation, selection, and markup tags for BI, data interchange, and
web posting purposes.

It is important to remember that the input and output files samples shown are small so they
can easily illustrate combinable functionality, not performance. The major benefit of SortCL,
in addition to task consolidation, is the ability to churn through many, massive input files
together.

In this example, the input files to be joined are unsorted. The first, nyse-a, is in tab-
delimited format and could have been exported from a Sybase table. The second input file,
buys.csv, is in CSV format, typical of a spreadsheet application.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 18

CoSort v9.5 Copyright 2011 IRI, Inc.###
Sort Control Language (SortCL) Program

Job Controls Phase
Load encryption library for integrated protection
/LIBRARY="C:\IRI\CoSort95\lib\libcscrypt.dll"

Input Phase
/INFILE=personal_info # Reads 1 input file
 /FIELD=(credit_card,POS=1,SEP='\t')
 /FIELD=(driv_lic,POS=2,SEP='\t')
 /FIELD=(name,POS=3,SEP='\t')

Action Phase
/REPORT
Output Phase
/OUTFILE=personal_info_encrypted
 /FIELD=(credit_card1=FPE_ALPHANUM(credit_card,"pass"),POS=1,SEP='\t')
 /FIELD=(driv_lic1=FPE_ALPHANUM(driv_lic,"pass"),POS=2,SEP='\t')
 /FIELD=(name,POS=3,SEP=’\t’)

A. O. Smith Corporation AOS 42.40 142900 0.04 0.09
A.G. Edwards Inc. AGE 52.81 251800 0.48 0.91
A.O. Tatn EFT First TNT 103.01 136000 1.01 0.99
AAG Holding Company1 GFZ 24.71 1900 0.06 0.24
AAG Holding Company2 GFW 25.05 4200 0.05 0.20
Aames Investment Corp. AIC 4.84 145500 0.04 0.82
Aaron Rents, Inc. RNT 24.05 1706300 2.53 9.51
ABB LTD. ABB 12.55 2456100 0.13 1.04
Abbey National plc SXA 25.00 24700 0.15 0.60
Abbott Laboratories ABT 47.25 4210700 0.15 0.31
Abercrombie & Fitch ANF 50.86 1973000 1.32 2.53
Abitibi-Consolidated ABY 2.61 240600 0.00 0.00
ABM Industries Inc. ABM 16.44 102600 0.36 2.14
ABN AMRO Holding N.V. ABN 27.47 195900 0.31 1.14

Input file 1, “nyse-a”

Input file 2, “buys.csv”

The goal of the following SortCL job script is to order and match these files by the ticker
symbol in their second columns so that a meaningful set of output reports can be created.
Field-level protections could certainly have been applied if desired.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 19

Shares,Symbol,Client
"1000","DIS","Bill Gates"
"950","EDS","Ben Graham"
"25000","WMT","Warren Buffet"
"3250","AMR","Jeff Bezos"
"775","TSG","Wendi Deng"
"400","HBC","Stephen Covey"
"2100","HIG","Richard Branson"
"950","TEM","Sergey Brin"
"1500","AGE","Michael Bloomberg
"5000","BAC","Donald Trump"
"3333","PRU","Steve Wynn"
"2000","ABN","Jack Welch"
"8500","RNT","George Soros"
"1000","MCK","Kerry Packer"
"4300","UNH","Rupert Murdoch"
"9000","SDS","Jesse Livermore"
"3500","SNE","Alan Greenspan"
"825","ABT","Lakshmi Mittal"
"9000","ABY","Robert Kiyosaki"
"855","ADS","Lisa Mangino"
"50","IBM","Rick Haines"
"90","SUN","Amrita Thakur"

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 20

Job Controls Phase
/WARNINGSON
/MONITOR=4

Input Phase
/INFILE=nyse-a # 1st Input, tab-delimited
 /FIELD=(Issue,POS=1,SEP='\t')
 /FIELD=(Symbol,POS=2,SIZE=3,SEP='\t')
 /FIELD=(LastTrade,POS=3,SIZE=5.2,SEP='\t',NUMERIC)
 /FIELD=(Volume,POS=4,SEP='\t',NUMERIC)
 /FIELD=(Change,POS=5,SIZE=4.2,SEP='\t', NUMERIC)
 /FIELD=(Percent,POS=6,SIZE=4.2,SEP='\t', NUMERIC)

/INFILE=buys.csv # 2nd Input, CSV format
/ALIAS=buys
/INSKIP=1 # skip header record
 /FIELD=(Shares,POS=1,SEP=',',FRAME='"')
 /FIELD=(Symbol,POS=2,SEP=',',FRAME='"')
 /FIELD=(Client,POS=3,SEP=',',FRAME='"')

Action Phase
/JOIN FULL_OUTER NOT_SORTED nyse-a NOT_SORTED buys \

WHERE nyse-a.Symbol EQ buys.Symbol

Output File 1 - 2D BI Report with Selection
/OUTFILE=TradingA # Summary record format
 /HEADREC=" -----------\n"
 /FIELD=(New_balance,POS=50,SIZE=14.2,currency)
 /SUM New_balance from (nyse-a.LastTrade * buys.Shares) # Expression logic

/OUTFILE=TradingA # Detail record format
 /HEADREC="Client Symbol Shares LastTrade Shares*LT Ln.\n\n"
 /FIELD=(buys.Client,POS=1,SIZE=17)
 /FIELD=(buys.Symbol,POS=20,SIZE=5)
 /FIELD=(nyse-a.Symbol,POS=28,SIZE=5)
 /FIELD=(buys.Shares,POS=35,SIZE=5)
 /FIELD=(nyse-a.LastTrade,POS=45,SIZE=5.2,NUMERIC)
 /FIELD=(product,POS=54,NUMERIC, IF nyse-a.Symbol NE buys.Symbol \
 THEN "" ELSE nyse-a.LastTrade * buys.Shares)
 /FIELD=(Sequencer,POS=66,SIZE=4) # Creates sliding index column

Output File 2 - Data Interchange Format
/OUTFILE=TradingA.xml
 /PROCESS=XML
 /FIELD=(Client,POS=1,SEP='|',XDEF="/Trades/Buy@Client")
 /FIELD=(Symbol,POS=2,SEP='|',XDEF="/Trades/Buy/Symbol")
 /FIELD=(Shares,POS=3,SEP='|',XDEF="/Trades/Buy/Shares")
 /INCLUDE WHERE nyse-a.LastTrade GT 10 AND buys.Shares GT 0

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 21

Output File 3 - Web-ready Summary Report
/OUTFILE=TradingA.htm # Summary record format
 /DATA="</TD>\n<TD align=right><U> \

 "
 /FIELD=(New_balance,SIZE=15,CURRENCY) # Derived in prior output spec!
 /DATA="</U></TD>\n</TR>\n"
 /SUM New_balance from (nyse-a.LastTrade * buys.Shares) WHERE symbol NE "RNT"
 /FOOTREC="</TABLE>
\nCreated on %s.\
 <HR></BODY>\n</HTML>",AMERICAN_DATE

/OUTFILE=TradingA.htm # Detail record format
 /HEADREC="<HTML><HEAD>\n<TITLE>HTML produced by SORTCL \
 </TITLE>\n</HEAD>\n<BODY><H2>Trading Summary \
 </H2>\n<TABLE CELLPADDING=4 CELLSPACING=1 BORDER COLS=5>\n"
 /OMIT WHERE Symbol EQ "RNT" OR SYMBOL EQ "" # Selection applied in display
 /DATA="<TR>\n<TD><I>"
 /FIELD=(buys.Client)
 /DATA="</TD>\n<TD align=right>"
 /FIELD=(buys.Symbol)
 /DATA="</TD>\n</TR>\n"

The following command ran the job above, producing all targets and job statistics at once:

sortcl /spec=stockjoin.scl

And as the outputs were created, requested warning and monitor messages were displayed:

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 22

 +16 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
 +18 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
 +19 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
 +38 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
 +47 stockjoin.scl: warning (101): "PRECISION" ambiguous reference
 warning TradingA
 gap [1 -> 49]
 warning TradingA
 gap [18 -> 19]
 gap [25 -> 27]
 gap [33 -> 34]
 gap [40 -> 44]
 warning TradingA.htm
 overlap [1 -> 14]
 warning TradingA.xml
 missing field before field 175
 missing field before field 177

CoSort Version 9.5 D90070608-1306 Copyright 1978-2011 IRI, Inc. www.iri.com
EDT 05:25:53 PM Monday, April 18 2011. #11162.9543 2 CPUs
Expires Dec 31, 2011 Monitor Level 4
 <00:00:00.00> event (57): /spec=stockjoin.scl initiated
 <00:00:00.00> event (57): /infile=nyse-a initiated
 <00:00:00.03> 2 CPUs
 <00:00:00.14> event (59): P5a5b88 infile opened
 <00:00:00.14> event (59): P5a5c08 infile opened
 <00:00:00.00> event (57): /infile=buys.csv initiated
 <00:00:00.06> event (66): cosort() process begins
 <00:00:00.14> event (59): d:\CS_JOIN_7d8.6fc infile opened
 <00:00:00.14> event (66): cosort() process begins
 <00:00:00.22> event (67): cosort() process ends
 <00:00:00.22> event (58): /infile=buys.csv completed
 <00:00:00.33> event (61): TradingA outfile opened
 <00:00:00.33> event (61): TradingA.xml outfile opened
 <00:00:00.33> event (61): TradingA.htm outfile opened
 <00:00:00.30> event (67): cosort() process ends
 <00:00:00.30> event (58): /infile=nyse-a completed
 <00:00:00.34> event (60): P5a5b88 infile closed0
 <00:00:00.34> event (60): P5a5c08 infile closed0
 <00:00:00.34> event (68): left 0 right 0
 <00:00:00.34> event (62): TradingA outfile closed
 <00:00:00.34> event (62): TradingA outfile closed
 <00:00:00.34> event (62): TradingA.xml outfile closed
 <00:00:00.34> event (62): TradingA.htm outfile closed
 <00:00:00.34> event (62): TradingA.htm outfile closed
 <00:00:00.39> event (58): /spec=stockjoin.scl completed
EDT 05:25:53 CoSort Serial # 11162.TEST 2 CPUs Expires Dec 31, 2011

http://www.iri.com/

In TradingA, both matches and non-matches are shown in order by ticker symbol. The
cross and down-row calculations across support business intelligence and billing operations.

Output file 1, “TradingA”

The next target, in valid XML format, contains only the selected fields and condition results:

Output file 2, “TradingA.xml”

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 23

Client Symbol Shares LastTrade Shares*LT Ln.

 ABB 12.55 1
 ABM 16.44 2
 ABN 27.47 3
Lakshmi Mittal ABT ABT 825 47.25 38981.25 4
Robert Kiyosaki ABY ABY 9000 2.61 23490.00 5
Lisa Mangino ADS 855 6
Michael Bloomberg AGE AGE 1500 52.81 79215.00 7
 AIC 4.84 8
Jeff Bezos AMR 3250 9
 ANF 50.86 10
 AOS 42.40 11
Donald Trump BAC 5000 12
Bill Gates DIS 1000 13
Ben Graham EDS 950 14
 GFW 25.05 15
 GFZ 24.71 16
Stephen Covey HBC 400 17
Richard Branson HIG 2100 18
Rick Haines IBM 50 19
Kerry Packer MCK 1000 20
Steve Wynn PRU 3333 21
George Soros RNT RNT 8500 24.05 204425.00 22
Jesse Livermore SDS 9000 23
Alan Greenspan SNE 3500 24
Amrita Thakur SUN 90 25
 SXA 25.00 26
Sergey Brin TEM 950 27
 TNT 103.0 28
Wendi Deng TSG 775 29
Rupert Murdoch UNH 4300 30
Warren Buffet WMT 25000 31

 $346,111.25

 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
- <Trades>

- <Buy Client="Lakshmi Mittal">
 <Symbol>ABT</Symbol>
 <Shares>825</Shares>

 </Buy>
- <Buy Client="Michael Bloomberg">

 <Symbol>AGE</Symbol>
 <Shares>1500</Shares>

 </Buy>
- <Buy Client="George Soros">

 <Symbol>RNT</Symbol>
 <Shares>8500</Shares>

 </Buy>
 </Trades>

file:///C:/Users/TEMP/demos4d/NyseJoin/
file:///C:/Users/TEMP/demos4d/NyseJoin/
file:///C:/Users/TEMP/demos4d/NyseJoin/
file:///C:/Users/TEMP/demos4d/NyseJoin/

The last output target is formatted with HTML and thus ready for web posting. Notice how
the omission of the RNT transaction changes the grand total from the first output file, and
how SortCL supports the use of ‘conversion specifiers’ to include system information (in this
case, the date below) in is reports:

Output file 3, “TradingA.htm”

Trading Summary

Lakshmi Mittal ABT

Robert Kiyosaki ABY

Lisa Mangino ADS

Michael Bloomberg AGE

Jeff Bezos AMR

Donald Trump BAC

Bill Gates DIS

Ben Graham EDS

Stephen Covey HBC

Richard Branson HIG

Rick Haines IBM

Kerry Packer MCK

Steve Wynn PRU

Jesse Livermore SDS

Alan Greenspan SNE

Amrita Thakur SUN

Sergey Brin TEM

Wendi Deng TSG

Rupert Murdoch UNH

Warren Buffet WMT

$141,686.25

Created on April 18, 2011.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 24

COSORT WORKBENCH

CoSort 9.5 includes a new Graphical User Interface (GUI) for the Sort Control Language
(SortCL) program. The new CoSort Workbench is a plug-in to the Eclipse Integrated
Development Environment (IDE) that helps users create, maintain, and execute SortCL
jobs. The Workbench provides new functional and ergonomic enhancements, including:

New job wizards, form dialogs and syntax-aware script editing

CoSort's new Workbench utilizes several different job presentation facilities within Eclipse to
improve the SortCL job design experience. The wizards take you from source and metadata
specification through the action phase of a job, and finally to the specification of one or
more targets and formats. Wizard and form dialog results help populate and modify SortCL
job scripts. A syntax-aware editor also facilitates valid script creation and change.

The top window in the figure below shows the editor view of a join job script. You can invoke
the join wizard (shown in the bottom left) from the main menu and within the script editor
view. The join wizard allows you to specify all details of a multi-table join action. The
bottom right window shows the target field layout of this job script. Note that multiple input
sources (shown in upper tabs) and output targets (shown in lower tabs) are presented in
this view to enable you to specify file and table target layouts quickly and efficiently.

Figure 3 CoSort Workbench Overview

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 25

ODBC-connected (DB table) data sources and targets

The introduction of ODBC source and target handling in CoSort 9.5 means that SortCL users
can integrate, stage, transform, protect, and report against relational data stored in Oracle,
DB2, SQL Server, SAP, MySQL, Sybase, and other tables. The Workbench uses the JDBC-
ODBC bridge in the Eclipse Data Tools Platform (DTP) for viewing and selecting table data.

In the graphic below, the left panel shows the DTP view of the database. The middle panel
displays the contents of the selected table, and the right panel is the Data Definition File
(DDF) form editor that is used to modify the table metadata specifications for a CoSort job.

Figure 4 DTP and DDF Editor

Metadata discovery

Those familiar with CoSort know that you must define the structure of all input and output
files in SortCL DDF syntax. This has traditionally been a manual field-by-field editing
process, or the result of a command line conversion program like cob2ddf (for COBOL
copybooks). For situations in which pre-existing metadata is not available, the new CoSort
workbench helps users to visually define their field layouts and populate file and table
metadata for use in SortCL jobs.

The following screenshot shows how users can define fixed-position fields by moving sliders
to the start and end of each field in a source data preview window. Once you add a field, the
bottom spreadsheet view reflects the DDF specifications which you can then modify. For
records with delimited fields, a column-based editor is provided instead, as sliders are
unnecessary. A HEX view option facilitates the definition of binary data.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 26

Figure 5 Define Metadata Wizard

Metadata conversion

The process of bulk metadata and third-party sort script migration to CoSort's SortCL syntax
has been modernized and automated in the Workbench. Wizards exist to translate third-
party data layouts into SortCL DDFs and SortCL job scripts. An example of the former would
be bulk COBOL copybook conversions to SortCL .ddf targets. There is a wizard to convert
one or more metadata repositories or file headers into DDF. There is also a wizard to convert
and import third-party sort specifications into SortCL job scripts.

The conversion wizard shown below demonstrates the conversion of one or more JCL sort
decks to SortCL job scripts. You can browse to identify the location of the parms, and then
automatically convert them for use in SortCL. The middle window shows advanced options
available for these conversions. The bottom window shows from left to right: project
explorer files (including the source and target job scripts), an editor displaying the source
job script, a display of the target job script, and a tree view of the components of the target
job script.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 27

Figure 6 Import Wizard and Imported Script

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 28

SORTCL COMMAND SET

The following is a list of the core commands available in SortCL as of CoSort Version 9.5:

/ALIAS
/APPEND
/ALTSEQ
/AVERAGE
/CHARSET
/CHECK
/CONDITION
/COUNT
/CREATE
/DATA
/DEBUG
/DUPLICATESONLY
/ENDIAN
/EXECUTE
/FIELD
/FILE
/FOOTREC
/HEADREAD
/HEADREC
/HEADSKIP
/HEADWRITE

/INCLUDE
/INCOLLECT
/INFILE
/INFILES
/INPROCEDURE
/INREC
/INSKIP
/JOBCOLLECT
/JOBSKIP
/JOIN
/KEY
/KEYPROCEDURE
/LENGTH
/LIBRARY
/LOCALE
/MAXIMUM
/MINIMUM
/MEMORY-WORK
/MERGE
/MONITOR
/NODUPLICATES

/OMIT
/OUTCOLLECT
/OUTFILE
/OUTPROCEDURE
/OUTSKIP
/PROCESS
/RC
/RECSPERPAGE
/REPORT
/ROUNDING
/SORT
/SPECIFICATION
/STABLE
/STATISTICS
/SUM
/TAILREAD
/TAILSKIP
/TAILWRITE
/WARNINGSOFF
/WARNINGSON

Note that each command may contain additional parameters that expand its functionality.
For example, the /JOIN ONLY command will eliminate the inner join results of a full outer
join. Note also that many external functions can be invoked beyond the command set. For
example, 256 AES encryption and de-identification functions, as well as set file lookups, are
specified as functions within /FIELD statements.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 29

METADATA CONVERSION TOOLS

CoSort Version 9.5 includes several tools to translate existing flat file layout (and sort job)
metadata for use in CoSort's Sort Control Language (SortCL) program. IRI has also
partnered with a leading metadata conversion company, Meta Integration Technology, Inc.
(MITI) to automatically create SortCL-ready file layouts from BI, ETL and relational
metadata.

About SortCL Metadata
SortCL's explicit text-based metadata is straightforward and self-documenting -- making it
easy to learn, use, and audit. You can store your files' field (column) layouts in reusable
Data Definition File (.ddf) repositories. You can paste or reference these definitions in your
SortCL job script. SortCL uses /FIELD= statements to identify column:

• Names or Aliases
• Sizes or Ranges
• Positions or Delimiters
• Data Types
• Conditions and Expressions
• Security and Other Functions

Third-Party Metadata
File layout translators included in the CoSort package can migrate your existing field/column
descriptions into SortCL (and RowGen) .ddf repositories. These tools can reduce or eliminate
the overhead associated with migrating metadata to a .ddf from:

• COBOL copybooks (cob2ddf)
• comma-separated values (csv2ddf)
• LDIF (ldif2ddf)
• XML (xml2ddf)
• W3C extended log format (elf2ddf)
• Oracle SQL*Loader control files (ctl2ddf)
• ODBC table data

Therefore, if you already have file layouts defined in the above applications, you can
automatically reproduce that metadata for use in any SortCL manipulations. If your file
layouts exist in other formats (including CWM, DSX, UML, XMI and XML), the Meta
Integration Model Bridge (MIMB) will convert these repositories into SortCL .ddf syntax. This
precludes the need for manually re-defining flat file field layouts for reference in SortCL
applications.

Sort Program Conversions
The included mvs2scl, and vse2scl utilities convert legacy MVS JCL, and VSE JCL,
respectively, to functionally-equivalent SortCL job specifications. Conversion tools cannot
translate every script. However, field re-casting usually works, and manual translation of
source scripts to SortCL equivalents is usually not difficult. For more information on, and
examples of, these tools, see IRI’s Legacy Sort Migration white paper.

Another CoSort tool -- called sorti2scl -- translates CoSort's sort interactive (SortI) program
job specifications into their SortCL job equivalents. See the SORTI PROGRAM chapter.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 30

UNIX SORT REPLACEMENT (BIN/SORT)

The /bin/sort utility provided with the Unix operating system is designed for ordering small
collections of alphanumeric data. It does not work well when the size of the data increases
beyond available memory. For those with an investment in, or familiarity with, existing
system sort commands, IRI provides a drop-in /bin/sort replacement tool that improves
high-volume sort performance through the CoSort engine.

Unix users are provided with a new /bin/sort, and Windows users get a unixsort.exe
program. Upon installation, the object file can be moved into a system directory to provide
sort services with the same syntax as the original sort verb, but at much higher
performance levels.

An example of CoSort’s Unix sort replacement follows, using the following data sample:

Input File 1, “chicago”

We first define the way to specify fields for the sort key. White space denotes the end of a
field unless a field separator character is defined.

To sort chicago starting with the second field, use the command:

/path2/cosort95/bin/sort -k 2 chicago –o out1

 Output File, “out1”

To sort starting at the second character of the first field, use the following command:

sort -k 1.2 chicago –o out2

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 31

8835 Beginnings 8.50 Prentice-Hall
4877 Going Nowhere 17.95 Valley Kill
1139 Greater Than 34.75 Valley Kill
3391 Married Young 24.95 Prentice-Hall
3928 Not On Call 9.99 Harper-Row
5180 On Top 15.95 Harper-Row
2272 Still There 13.05 Dell

5180 On Top 15.95 Harper-Row
3391 Married Young 24.95 Prentice-Hall
8835 Beginnings 8.50 Prentice-Hall
2272 Still There 13.05 Dell
1139 Greater Than 34.75 Valley Kill
3928 Not On Call 9.99 Harper-Row
4877 Going Nowhere 17.95 Valley Kill

Output File, “out2”

The CoSort /bin/sort replacement also supports legacy Unix sort options. For example:

sort -t, +3 +2nr -3 chicago –o out3

Output File, “out3”

CoSort’s Unix sort replacement supports these command-line flags:

[-c][-d][-m][-f][-u][-i][-o][-M][-T][-b][-n][-t][-r][-z]
[-y] and [–Kmem] flags are supported indirectly via values defined in your cosortrc file. For
more information, see the SYSTEM TUNING chapter.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 32

2272 Still There 13.05 Dell
5180 On Top 15.95 Harper-Row
3928 Not On Call 9.99 Harper-Row
3391 Married Young 24.95 Prentice-Hall
8835 Beginnings 8.50 Prentice-Hall
1139 Greater Than 34.75 Valley Kill
4877 Going Nowhere 17.95 Valley Kill

1139 Greater Than 34.75 Valley Kill
5180 On Top 15.95 Harper-Row
2272 Still There 13.05 Dell
3391 Married Young 24.95 Prentice-Hall
8835 Beginnings 8.50 Prentice-Hall
4877 Going Nowhere 17.95 Valley Kill
3928 Not On Call 9.99 Harper-Row

SORT INTERACTIVE PROGRAM (SORTI)

One of the unique components of the CoSort package is a menu-driven prompting program
for users who may not have prior experience with data sorting software, or with prior
metadata. The purpose of CoSort’s “Sort Interactive” or SortI program is to allow users to
easily create and run sort/merge specifications from any Unix, Linux or Windows command
line.

CoSort’s interactive and batch SortI program is invoked with the command:

sorti
A banner appears similar to the one below:

The SortI user is then prompted for responses. For example:

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 33

C:\iri\CoSort95\bin>sorti
 CoSort Sort Interactive Version 9.5 D90110608-1306
 Copyright 2011 Innovative Routines International, Inc.
 S/N 11162.9543 2 CPUs
 Eastern Daylight Time 04:15:51 PM Monday, April 18 2011
 Directory: C:\iri\CoSort95\bin
 # Threads: 2
 BlockSize: 2097152 bytes
 MaxMemory: 268435456 bytes
 WorkAreas: d:\temp\sortwork, e:\temp2
 Responses: <cr> takes offered default
 'stop' restarts the Action
 'help' explains each query
 $variable defined in shell
 # starts comment for batch
 !command for shell command

__
Action: SORT MERGE DISPLAY GUIDE (default) END:

Users are also prompted to save their job specifications to a parameter file that can be run
in batch mode. In this case, specifications were saved to sales2_sort.spc. To run the same
job in a batch stream, the shell command would be:

sorti sales2_sort.spc
To expand beyond sorting the input file, and to leverage the extensive data transformation,
reformatting, and reporting capabilities available through CoSort’s SortCL program, a “SortI
– to – SortCL” parameter translation tool is also provided in the CoSort package. Running
the tool sorti2scl against the original SortI parameters will create the equivalent file layout
and manipulation metadata for SortCL. For example, this command:

sorti2scl sales2_sort.spc sales2_sort.scl
will automatically build this SortCL job script equivalent:

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 34

sortcl specs created by sorti2scl on Mon April 18 10:15:45
sorti specifications by cosort_user (user)
Tue April 19 09:31:12 2011
/INFILE=sales2.dat
/SORT

/KEY=(pos=22,size=10,ASCENDING,ISO_DATE)
/OUTFILE=sales2_sorted

Action: SORT MERGE DISPLAY GUIDE (default) END: SORT
INPUT Record length 0 (variable (default)) / fixed #: 0
 Number of files: 0 (proc) / +- numb (1 default): 1
 Input file 1: sales2.dat
KEYS [number] [stable] [unique / dus_only] (1 default): 1
 Key 1 Direction: ASCENDING (default) or DESCENDING: ASC
 Location: FIXED (default) / <separator char>: FIXED
 Starting byte position: 1 (default): 22
 Field Size: 32767 (maximum) 50 (default): 10
 Form: ALPHA (def), NUM, DATE, TIME, TIMESTAMP: DATE
 Type AMERICAN (default) or LIST to show options: LIST
 TYPE DATE TIME
 --
 AMERICAN (MM/DD/YYYY Hr:Mn:Ss AM)
 EUROPEAN (DD.MM.YYYY Hr.Mn.SS)
 JAPANESE (YYYY-MM-DD Hr:Mn:Ss)
 ISO (YYYY-MM-DD Hr.Mn.Ss)
 CS_Y2K_ASCII_JULIAN (YYDDD)
 CS_Y2K_ASCII_YR (YY)

COBOL MIGRATION TOOLS

CoSort Version 9 ships with the tools, libraries, and documented examples you need to
achieve a wide range of COBOL data migration and processing goals on open systems:

Sorting and Migrating COBOL Data
All CoSort interfaces support MF and RM COBOL data type collation while SortCL also
handles conversion. CoSort includes a COBOL copybook metadata translation tool to
leverage your file layouts in SortCL applications, and JCL sort parm conversion tools to
leverage your MVS and VSE cards. CoSort can also sort EBCDIC data and can sort ASCII
data in EBCDIC order. Multiple conversions can be done while simultaneously sorting.

Accelerating Native Sort Calls
CoSort is faster than your compiler's built-in sort function, and CoSort packages include
several tools and methods to improve COBOL sort performance:

• Sort replacement for ACUCOBOL-GT
• Sort replacement for Micro Focus COBOL
• Serial and concurrent system calls to SortCL
• Static and dynamic API calls to CoSort libraries

Sorting and Converting Index, Variable Length & Blocked Files
CoSort's SortCL tool can perform multiple manipulations and conversions on ACUCOBOL-GT
Vision files, Micro Focus variable length records, and I-SAM files. In the SortCL (4GL) job
script, you define your input and output file formats and record layouts, along with your
data filtering and transformation (sort, join, aggregate, etc.). You can integrate these
formats with files in other formats all at the same time, and write output files in the same or
different file format.

Generating Reports
CoSort's SortCL program includes a wide range of reporting features you can exploit to
customize detail and summary targets for presentation and hand-offs to other tools.

Protecting Sensitive Data
Either as a separate process, or in combination with the above SortCL activities, you can
also engage field-level protection functions like encryption and de-identification.

Creating Safe COBOL Test Data
CoSort's Test Data (RowGen) product uses the same syntax as SortCL to define the layout
of COBOL index and sequential files containing randomly-generated or individually-selected
test data.

Auditing Data and Applications
For data governance and other tracking purposes, SortCL also offers several logging options,
including a query-ready XML file with complete scripts (containing field privacy protection
specifications).

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 35

APPLICATION PROGRAMMING INTERFACES (APIs)

In addition to the many standalone utilities and third-party sort replacements in each
CoSort package, there are two high-performance, thread-safe sorting libraries you can call
into your software. Each API satisfies a different class of requirements.

You can link these C routines statically or dynamically, and the same calling code runs
across all Unix, Linux and Windows platforms. Both libraries leverage the same multi-
threaded CoSort sorting routine against any volume of input. Inputs and outputs can be in
the form of files, pipes, records and record buffers (blocks) streaming to and from multiple
calls simultaneously from your applications.

Integrating Sort/Merge Operations Only
The traditional CoSort API is now thread-safe, and is documented as cosort_r(). You can call
cosort_r() to speed operations that sort or merge high volumes of data. Because your
programs configure the input, compare, and output processes into the CoSort engine, you
also can apply your own selection and comparison criteria.

The 'r' in cosort_r() refers to the reentrant nature of the call; you can call the function
recursively from multiple processes. This means you can specify multiple sort orderings on
the same input, and in the same pass. Flexible architecture also allows you to manage
several sort jobs from within a single process, and from within as many processes as you
like.

Integrating Multiple Transformation Functions
CoSort's multi-purpose SortCL tool is also available for thread-safe application calls and can
enable the simpler execution of scripts. Embed CoSort's sortcl_routine() library to speed
and combine many functions, including:

• Sort/Merge
• Match/Join
• Aggregate/Calculate
• Filter/Scrub
• Type-Conversions
• Encrypt/De-ID
• Reporting
• Random Data Generation

This API gives you access to all the data transformation, business intelligence, protection,
and prototyping functions available in SortCL's data definition and manipulation syntax.
Integrating sortcl_routine() into an ETL environment allows you to source and target
database tables, as well as files, pipes, and custom input/output procedures.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 36

The following C program demonstrates the simplicity of calling SortCL scripts via the
sortcl_routine(api):

You can make calls to the sortcl_routine library from any language that links to C. For more
information about the content of SortCL job specification (.scl) files, see the functional
description and scripting samples in the SORTCL PROGRAM chapter.

COBOL programmers may also wish to consider the ability to call SortCL scripts as system
calls; for example:

CALL "system" USING "sortcl /spec=keyproc.scl &"

where keyproc.scl starts in the background while other COBOL program functions run.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 37

/* *
* Copyright 1978-2011 CoSort / Innovative Routines International (IRI), Inc.
* All Rights Reserved.
*
* SortCL API example to run a script file
* ScriptFile: keyproc.scl
* Input File: chiefs
* Output File: chiefs.out
* */
/* cosort header file */

#if defined (_WIN32)
#define __DLL_IMPORT__ /* IMPORTANT: needed to work with Windows DLL */
#pragma pack(1) /* or compile with /Zp1 option */
#endif /* (_WIN32) */
#include "cosort.h"
#include "sortcl_routine.h"

int main()
{
int iRetVal; /* return value */
cs_sortcl_t* sortcl; /* main sortcl context variable */
/* allocate the main sortcl context variable */
sortcl = sortcl_alloc();
if (sortcl) {
/* call sortcl_routine api */
iRetVal = sortcl_routine(sortcl, "/spec=keyproc.scl");
/* free the sortcl variable */
sortcl_free(sortcl);
}
/* if return value != 0 it is an error */
return (iRetVal);

SYSTEM TUNING

High-volume sorting and related data manipulations can be very resource-intensive. CoSort
can achieve scalability that is nearly linear through its proprietary processing techniques
and the proper application of system tuning. At the same time, however, CoSort is designed
to be a good neighbor in a multi-user computing mix.

System administrators can combine kernel and CoSort tuning to optimize the performance
of large data transformations without unduly impacting concurrent jobs. To prioritize CoSort
operations at the system (global), user, or job level, simply adjust the values associated
with the parameters shown below in your resource control file(s) (on Unix) or Windows
registry:

Threads
On SMP platforms, CoSort users can manually set the number of sub-processes that sorts
and related transformations will create. In most cases, the closer this value is set to the
number of actual processors and disk drives on the system, the better the performance.

Memory Allocation
By assigning, or limiting the amount of random access memory available for sorting, system
administrators can maximize the efficiency of jobs according to their desired system priority.
Like CoSort's other system tuning controls, this variable allows users to determine how
much impact CoSort will have on concurrently running applications.

Block Size
Blocks of memory are used as buffers to hold data temporarily. The data move through
input, sort and output phases of the CoSort utilities (or a customized front-end), and
between an application (calling) program and the cosort() engine. The size of these blocks
determines how often disk I/O will be performed, and is a function of how much memory is
available.

Overflow Storage
Overflow occurs in sorting when there are more input records than can be held in memory.
When all the overflow data are distributed to temporary files, these files and the internal
data are merged to produce output. Users can control the location of these temporary files
and distribute them across multiple file systems. Where multiple drives and threads are
specified, speed can increase in the later stages of the sort as the data is read back (into
the output file/s) in parallel. You can also use input selection to reduce processing volume
and temporary space requirements at runtime.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 38

CoSort resource controls also include these application-specific values:

Record Terminator
Where variable length output is specified, any record terminating character can be specified.
The default option is to use the same terminator present in the input data source, if
applicable (which is typically a linefeed on Unix and carriage-return/linefeed on Windows).
Alternatively, you can choose either of these styles, regardless of the terminator type used
on input -- or you can select your own special terminator character(s), including a NULL
character ("").

Century Window
Users with non-Y2K-compliant (2-digit date) data can specify the minimum year for CoSort
to sort after 1999. This “sliding” feature allows custom collation for any century-bordering
dates.

Pause / Resume
During large sort operations that require the creation of temporary work files, CoSort can
warn users when temporary disk space is exhausted, and allow for ad hoc re-allocation so
that the job can continue without having to be re-started.

Runtime Monitoring
By specifying various levels of verbosity, CoSort users can view on-screen job progress
reports with timestamps and event messaging. Events include the opening and closing of
input, work, and output files and the number of records accepted, rejected or processed.
Displays range from off (level 0) to showing every single record (number) being processed
(level 9).

Execution Log
Basic runtime information can be directed to one or more files to archive CoSort jobs and
their performance. This log file is a self-appending text file. A self-replacing text file called
.cserrlog is created during each run to record tuning and version information, and any error
messages, in the event of an abnormal termination (for debugging purposes).

Audit Log
Detailed runtime information can be optionally directed to a self-appending, query-ready
XML log file that contains environmental and performance details, and the entire SortCL job
script, to record every aspect of the application (data definitions, manipulations and
protections) in order to verify compliance with procedures and data privacy regulations.

A complete description of all parameters, and how to tune them, can be found in
Appendix D of the CoSort User Manual.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 39

TECHNICAL SPECIFICATIONS
Technical Specifications
CoSort is a general-purpose data manipulation package for large file transformation,
reporting, protection and conversion. All of its native utilities, third-party sort replacements,
and API calls link to the same coroutine sort engine which processes all file formats and
record types, and provides in-memory, record-level processing for file and data
manipulation. CoSort uses these techniques, along with granular tuning parameters, to both
optimize application throughput and prioritize resources in the multi-user mix. CoSort’s
unique approach cuts production times without compromising performance of concurrent
jobs.

Installation
 Distributed via internet or user-specified media
 Loads in under two minutes
 Menu-driven setup and configuration utility

Invocation
 Command line (including pipe sequences), shell commands and batch scripts
 CoSort Workbench – installed on your local system
 Application calling programs as a standalone executable, subroutine or coroutine call,

with or without additional exit routines.

Ease of Use
 Processes using record layouts and SQL-like field definitions from central data

dictionaries
 Converts and processes native COBOL copybook, Oracle SQL*Loader control file,

CSV, and W3C extended log format (ELF) file layouts
 SortCL is a supported MIMB metadata format
 Provides on-line help, pre-runtime application validation, and runtime errors
 Leverages centralized application and file layout definitions (metadata repositories)
 Reports problems to standard error when invoked from a program, or to an error log
 Runs silently or with verbose messaging without user intervention
 Allows user control over the amount of informational output produced
 Generates a query-ready XML audit log for data forensics and privacy compliance
 Describes commands and options through man pages and on-line documentation
 Easy-to-use interfaces and seamless third-party sort replacements preclude the need

for training classes; however, advanced training is available in Florida or at user sites
 Phone, fax and Email support available directly from the product developers
 Local language support is available from 30 international offices.

Resource Control
 Sets and allows user modification of the maximum and minimum number of

concurrent sort threads for sorting on multi-CPU and multi-core systems
 Uses a specified directory or a combination of directories for temporary work files
 Limits the amount of main and virtual memory used during sort operations
 Sets the size of the memory blocks used as physical I/O buffers

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 40

Input and Output
 Processes any number of files, of any size, and any number of records, fixed or

variable length (to 65,535 bytes) passed from flat files, an input procedure, from
stdin, a named pipe, a table in memory, or from an application program

 Supports the use of environment variables and wildcards in the specification of input
and output files, as well as absolute path names and aliases

 Accepts and outputs fixed- or variable-length records with delimited fields
 Generates one or more output targets, and/or summary information, including

formatted and dashboard-ready reports
 Returns sorted, merged, or joined records one (or more) at a time to an output

procedure, to stdout, a named pipe, a table in memory, one or more new or existing
flat files, or to an application program

 Outputs optional sequence numbers with each record, at any starting value, for
indexed loads and/or reports

 Synthesizes randomly generated or randomly hand-selected field test data values.

Record Selection and Grouping
 Includes or omits input or output records using field-to-field or field-to-constant

comparisons
 Compares on any number of data fields, using standard and alternate collating

sequences
 Sorts and/or reformats groups of selected records
 Matches two or more sorted or unsorted files on inner and outer join criteria using

SQL-based condition syntax
 Skips a specified number of records, bytes, or a record header
 Processes a specified number of records or bytes, including a saved header
 Eliminates or saves records with duplicate keys.

Sort Key Processing
 Allows any number of key fields to be specified in ascending or descending order
 Supports any number of fields from 10 to 65,535 bytes in length
 Orders fields in fixed position or floating (on one or more delimiters)
 Supports numeric keys, including all C, FORTRAN, and COBOL data types
 Supports single and multi-byte character keys, including ASCII, EBCDIC, ASCII in

EBCDIC sequence, American, European, ISO and Japanese timestamps, and natural
(locale-dependent) values, as well as Unicode and double-byte characters such as
Big5, EUC-TW, UTF32, and S-JIS

 Allows left or right alignment and case shifting of character keys
 Accepts user compare procedures for multi-byte, encrypted and other special data
 Performs record sequence checking
 Maintains input record order (stability) on duplicate keys
 Controls treatment of null fields when specifying floating (character separated) keys
 Collates (and converts between many of) the following data types (formats):

Form Group Form Type

0 Alphabetic

1 Numeric

2 Date

3 Time

4 Timestamp

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 41

Single Byte Types
of Form 0

Reference Standard Form 1 -
Numeric Types

C Types

ASCII [LATIN1] ISO 8859-1 CHAR Character, Natural (ASCII)

EBCDIC IBM Standard SCHAR Character, Signed
LATIN2 ISO 8859-2 UCHAR Character, Unsigned (EBCDIC)

LATIN3 ISO 8859-3 SHORT Integer, Short Signed

BALTIC ISO 8859-4 USHORT Integer, Short Unsigned
CYRILLIC ISO 8859-5 INT Integer, Natural Signed

ARABIC ISO 8859-6 UINT Integer, Natural Unsigned

GREEK ISO 8859-7 LONG Integer, Long Signed

HEBREW ISO 8859-8 ULONG Integer, Long Unsigned

TURKISH [LATIN5] ISO 8859-9 FLOAT Single Precision Float

LATIN6 ISO 8859-10 DOUBLE Float, Double Precision

ASC_IN_EBC e.g. "123">"ABC" Form 1 -
Numeric Types

Ryan-McFarland (Liant)
COBOL Types

ASC_IN_NATURAL e.g. "ABC">"A-D" RM_COMP COMP, Signed

Multi-Byte Types
of Form 0

Reference Standard URM_COMP COMP, Unsigned

JOHAB KS X 1001:1992 RM_CMP1 COMP-1

KEF Korean EBCDIC RM_CMP3 COMP-3, Signed

EHANGUL IBM DBCS-HOST URM_CMP3 COMP-3, Unsigned
HHANGUL Hitachi Hangul RM_CMP6 COMP-6

UTF8/UNICODE ISO 10646:1993-1 RM_DISP DISP, Signed

UTF16/UCS2/UNICO
DE

ISO10646 URM_DISP DISP, Unsigned

UTF32/UCS4/UNICO
DE

ISO10646 RM_DISPSL DISP, Sign Leading

GBK/EUC_CN ISO10646 (China) RM_DISPSLS DISP, Sign Leading Separate

BIG5 BIG5 (Hong Kong) RM_DISPST DISP, Sign Trailing
EUC_TW CNS 11643-1992

(Planes 1 - 3)
RM_DISPSTS DISP, Sign Trailing Separate

EUC_KR KS X 1001:1992 Form 1 -
Numeric Types

Micro Focus COBOL Types
(Meaning)

EUC_JP JIS X 0201-1976
JIS X 0208-1990
H/W Katakana
JIS X 0212-1990

MF_COMP COMP, Signed

UMF_COMP COMP, Unsigned

MF_CMP3 COMP-3, Packed Decimal

SJIS (Shift_JIS) JIS X 0208-1990 UMF_CMP3 COMP-3, Unsigned
IBM_DBCS_HOST
(Mainframe
Encoding)
and
IBM_DBCS_PC
(PC Encoding)

IBM Japanese, IBM
Korean, IBM Simplified
Chinese, and, IBM
Traditional Chinese

MF_CMP4 COMP-4, Signed
UMF_CMP4 COMP-4, Unsigned
MF_CMP5 COMP-5, Signed
UMF_CMP5 COMP-5, Unsigned

Form 1-
Numeric Types

Alphanumeric MF_CMPX COMP-X

ASCNUM, NUMERIC Integers, real numbers,
and floating points

MF_DISP DISP, Signed

UMF_DISP DISP, Unsigned
MF_DISPSL DISP, Sign Leading
MF_DISPSLS DISP, Sign Leading Separate
MF_DISPST DISP, Sign Trailing
MF_DISPSTS DISP, Sign Trailing Separate

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 42

Form 1 -
Numeric Types

Miscellaneous Forms 2-4
Date, Time and

Timestamp

Syntax

ZONED_DECIMAL Zoned Decimals AMERICAN_DATE month(name or
integer)/day/year

ZONED_EBCDIC Zoned Decimals in
EBCDIC

AMERICAN_TIME hour[:minute][:second] xM

PSIGNF Packed Decimals AMERICAN_TIMESTAMP month/day/year
hour[:minute][:second] xM

Form 1 -
Numeric Types

EBCDIC Native
RM COBOL Types

EUROPEAN_DATE day.month(name or
integer).year

ERM_COMP COMP, Signed EUROPEAN_TIME hour[.minute][.second]
ERM_UCOMP COMP, Unsigned EUROPEAN_TIMESTAMP day.month.year

hour[.minute][.second]
ERM_CMP1 COMP-1 JAPANESE_DATE year-month(name or

integer)-day
ERM_CMP3 COMP-3, Signed JAPANESE_TIME hour[:minute][:second]

ERM_UCMP3 COMP-3, Unsigned JAPANESE_TIMESTAMP Year-month-day
hour[:minute][:second]

ERM_CMP6 COMP-6 ISO_DATE year-month(name or
integer)-day

ERM_DISP DISP, Signed ISO_TIME hour[.minute][.second]

ERM_UDISP DISP, Unsigned ISO_TIMESTAMP Year-month-day
hour[:minute][:second]

ERM_DISPSL DISP, Sign Leading MONTH_DAY Jan"<"Feb" and
"Wed"<"Thu"

ERM_DISPSLS DISP, Sign Leading
Separate

Year 2000 Types Syntax

ERM_DISPST DISP, Sign Trailing Y2K_ASCII_YR 2-digit year

ERM_DISPSTS DISP, Sign Trailing
Separate

Y2K_ASCII_JULIAN 5-digit Julian date

Form 1 -
Numeric Types

EBCDIC Native Micro
Focus COBOL Types

ASCII Supplement Data Example

EMF_COMP COMP, Signed ALIGNMENT NONE " Chars "
EMF_UCOMP COMP, Unsigned ALIGNMENT LEFT "Chars "
EMF_CMP3 COMP-3, Packed Decimal ALIGNMENT RIGHT " Chars"
EMF_UCMP3 COMP-3, Unsigned CASEFOLD YES " Chars "
EMF_CMP4 COMP-4, Signed CASEFOLD NO " CHARS "

EMF_UCMP4 COMP-4, Unsigned
EMF_CMP5 COMP-5, Signed
EMF_UCMP5 COMP-5, Unsigned
EMF_COMPX COMP-X
EMF_DISP DISP, Signed
EMF_UDISP DISP, Unsigned
EMF_DISPSL DISP, Sign Leading
EMF_DISPSLS DISP, Sign Leading

Separate
EMF_DISPST DISP, Sign Trailing
EMF_DISPSTS DISP, Sign Trailing

Separate

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 43

Chinese Big5
Multi-Byte Types of Form 6

Collation Order/
Encoding Standard

CHINESE_UNICODE_STROKE Unicode 5.2.0:
http://www.unicode.org/versions/Unicode5.2.0/

CHINESE_BIG5,HK,MO,ROC,TW Bihua (Stroke)

Windows Codepage 950:
http://msdn.microsoft.com/en-us/goglobal/cc305155.aspx

CHINESE_BIG5_RARE,HK_RARE,
MO_RARE,ROC_RARE,TW_RARE

CHINESE_BIG5_DIGITS Encoding order

Chinese GBK
Multi-Byte Types of Form 6

Collation Order/
Encoding Standard

CHINESE_UNICODE_PINYIN Unicode 5.2.0:
http://www.unicode.org/versions/Unicode5.2.0/

CHINESE_GBK_SIMPLIFIED,
PRC_SIMPLIFIED,SG_SIMPLIFIED

Pinyin

Windows Codepage 936:
http://msdn.microsoft.com/en-us/goglobal/cc305153.aspx

CHINESE_GBK_TRADITIONAL,
PRC_ TRADITIONAL, SG_TRADITIONAL
CHINESE_GBK_TRADITIONAL_RARE,
PRC_ TRADITIONAL_RARE,
SG_ TRADITIONAL_RARE
CHINESE_GBK_DIGITS Encoding order

Japanese Shift_JIS
Multi-Byte Types of Form 6

Collation Order/
Encoding Standard

JAPANESE_ALPHABET,JP_ALPHABET Dictionary order

Windows Codepage 932:
http://msdn.microsoft.com/en-us/goglobal/cc305152.aspx

JAPANESE_HIRAGANA_BIG,
JP_HIRAGANA_BIG
JAPANESE_HIRAGANA_SMALL,
JP_HIRAGANA_SMALL
JAPANESE_HIRAGANA,
JP_HIGRAGANA
JAPANESE_KATAKANA_FULL_BIG,
JP_KATAKANA_FULL_BIG
JAPANESE_KATAKANA_FULL_SMALL,
JP_KATAKANA_FULL_SMALL
JAPANESE_KATAKANA_FULL,
JP_KATAKANA_FULL
JAPANESE_KATAKANA_HALF,
JP_KATAKANA_HALF
JAPANESE_DIGITS,JP_DIGITS
JAPANESE_UNICODE_ALPHABETIC,
JP_UNICODE_ALPHABETIC

Dictionary order

Unicode 5.2.0:
http://www.unicode.org/versions/Unicode5.2.0/

JAPANESE_UNICODE_HIRAGANA_BIG,
JP_UNICODE_HIRAGANA_BIG
JAPANESE_UNICODE_HIRAGANA_
SMALL,JP_UNICODE_HIRAGANA_
SMALL
JAPANESE_UNICODE_HIRAGANA,
JP_UNICODE_HIRAGANA
JAPANESE_UNICODE_KATAKANA
_FULL_BIG,
JP_UNICODE_KATAKANA _FULL_BIG
JAPANESE_UNICODE_KATAKANA
_FULL_SMALL,JP_UNICODE_
KATAKANA _FULL_SMALL
JAPANESE_UNICODE_KATAKANA
_FULL,JP_UNICODE_KATAKANA _FULL
JAPANESE_UNICODE_KATAKANA_
HALF,JP_UNICODE_KATAKANA_HALF

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 44

http://www.unicode.org/versions/Unicode5.2.0/
http://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
http://msdn.microsoft.com/en-us/goglobal/cc305153.aspx
http://www.unicode.org/versions/Unicode5.2.0/
http://msdn.microsoft.com/en-us/goglobal/cc305155.aspx
http://www.unicode.org/versions/Unicode5.2.0/

Korean KSC5601
Multi-Byte Types of Form 6

Collation Order/
Encoding Standard

KOREAN_HANGUL,KR_HANGUL Dictionary order

Windows Codepage 949:
http://msdn.microsoft.com/en-us/goglobal/cc305154.aspx

KOREAN_HANGUL_RARE,KR_
HANGUL_RARE
KOREAN _DIGITS,KR_DIGITS

KOREAN_UNICODE_HANGUL,
KR_UNICODE_HANGUL

Dictionary order

Standard Unicode
Data Types

Collation Order/
Encoding Standard

UTF16_UNICODE Dictionary order
UTF16_DIGITS Encoding order

Record Reformatting
 Inserts, removes, resizes, and reorders fields within records
 Defines new fields through the use of various field-level functions
 Converts data in fields from one format to another either using internal conversion
 Maps common fields from differently formatted input files to a uniform sort record
 Joins any fields from several files into an output record, usually based on a condition
 Changes record layouts from one file type to another, including: Line Sequential,

Record Sequential, Variable Sequential, Blocked, Microsoft Comma Separated Values
(CSV), ACUCOBOL Vision, MF I-SAM, MFVL, Unisys VBF, VSAM (within UniKix MBM),
Extended Log Format (W3C), LDIF and XML

 Maps processed records to many differently formatted output files
 Writes multiple record formats to the same file for complex report requirements
 Performs mathematical operations and other mathematical functions, such as

trigonometric functions, on field data (including aggregate data) to generate new
output fields

 Calculates the difference in days, hours, minutes and seconds between two
timestamps

Field Reformatting/Validation
 Aligns desired field contents to either the left or right of the target inrec or output

field, where any leading or trailing fill characters from the source are moved to the
opposite side of the string

 Retrieves and re-maps values from multi-dimensional, tab-delimited lookup files
 Creates and processes sub-strings of original field contents, where you can specify a

positive or negative offset (from the left or right, respectively, of the source field)
and a number of bytes to be contained in the sub-string

 Finds a user-specified text string in a given field, and replaces all occurrences of it
with a different user-specified text string on output

 Supports Perl Compatible Regular Expressions (PCRE), including pattern matching
 Uses C-style “iscompare” functions to validate contents at the field level (for

example, to determine if all field characters are printable), which can also be used
for record-filtering via /INCLUDE and /OMIT statements

 Protects sensitive field data with field-level de-identification and AES-256 encryption
routines, along with anonymization, pseudonymization, filtering and other column-
level data masking (obfuscation) techniques

 Supports custom, user-written field-level transformation libraries, and documents an
example of a field-level data cleansing routine from Melissa Data (AddressObject)

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 45

http://msdn.microsoft.com/en-us/goglobal/cc305154.aspx

Record Summarization
 Consolidates records with equal keys into unique records, while totaling, averaging,

or counting values in specified fields, including derived (cross-calculated) fields
 Produces maximum, minimum, average, sum, and count fields
 Displays running summary value(s) up to a break (accumulating aggregates)
 Breaks on compound conditions
 Allows multiple levels of summary fields in the same report
 Re-maps summary fields into a new format, allowing relational tables
 Ranks data through a running count of descending numeric values
 Write detail and summary records to the same output file for structured reports

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 46

LICENSING INFORMATION
Licensing Information

IRI and its expert agents around the world license CoSort for perpetual use on individual
computer systems. Maintenance (technical support and site-specific software updates)
services are provided free of charge during the first year after installation. Subsequent
annual maintenance is usually offered at 15% and 20% of the base license fee, and 24/7
technical support is available as an upgrade.

CoSort license fees for Unix systems are based on specific machine make and model
numbers. CoSort license fees for x86 Linux and Windows are based on RAM. In either case,
additional charges for multiple CPUs and cores are assessed to reflect the performance
gains from parallel-processing operations.

License fee discounts apply for multiple copies of CoSort at the same installation, and for
runtime integration and redistribution (for ISVs only). IRI is generous with credit for
hardware upgrades and migrations, and provides for no- or low-cost fail-over (disaster
recovery) licenses.

U.S. educational and 501c(3) non-profit institutions qualify for a 10% license fee discount
and government agencies will find CoSort on the GSA schedule.

A confidential license fee quotation and a free 30-day trial are available from your IRI agent,
pursuant to a non-disclosure agreement.

A free, 30-day trial period is offered prior to licensing. A non-disclosure agreement must be
completed, executed and returned by fax or mail to an IRI agent.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 47

COMPANY BACKGROUND
Company Background

IRI is an Independent Software Vendor (ISV) specializing in high-performance data sorting
and manipulation software. The company was founded as Information Resources, Inc. of
New York in May 1978. Its high-performance sort specialists were the first to apply
coroutine sort (CoSort) technology off the mainframe and onto personal computers -- CP/M
80 and 86 in 1980 and MS-DOS in 1982. CoSort was then the first commercial Unix sort
package, developed in C on an AT&T 3B2 in 1985.

IRI began to grow more rapidly in the early 1990s amid a sort platform downsizing trend
that continues to this day. Business improved further from CoSort’s adoption in the world's
largest Unix data warehouses, and from its unparalleled flexibility in Windows environments.
Since the advent of commercial Unix, all major hardware manufacturers, including: HP, IBM,
Intel, Siemens, Sun, and Unisys, have continued to seek CoSort benchmarks and cross-
certifications while recommending CoSort to their customers. In addition, many leading
DBMS, data warehousing, and vertical-industry ISVs -- as well as consultants in these
spaces -- embed or recommend the use of CoSort technology within applications to improve
performance in high-data volume environments.

During a key expansion in 1995, IRI moved to Melbourne, on Florida's high-technology
"Space Coast," and changed its name to Innovative Routines International, Inc. The
Company moved to larger space again in 1996, and announced the release of CoSort for
Windows NT, Windows 95 and OS/2 Warp. In 1997, CoSort became the first Unix sort
package to run across SMP CPUs and set industry performance standards. CoSort version
6.2 sorted a gigabyte in under a minute. Later that year, PC Week declared CoSort the
fastest sort for Windows. In 1999, CoSort 7 was introduced, and featured the only single-
pass join technology in the sort market, in addition to extensive drill-down aggregation and
cross-calculation functionality. Multi-threaded for SMP servers, CoSort 7 also introduced a
unique Java GUI to allow users to read and write SortCL specifications and then execute
them locally or any networked Windows or Unix platform.

In succeeding years, CoSort saw increased integration into third-party database, data
warehouse extract-transform-load (ETL), automation, and e-commerce analytic software.
Version 7.5 was an interim release in 2001 that enhanced Internet and international data
type support, made the original CoSort API thread-safe, and improved aggregation and
reporting features in SortCL. In 2002, IRI also lead the sort world by porting CoSort to
Intel's 64-bit Itanium platform and IBM eServer iSeries (AS/400) for Linux and OS/400
PASE. 2003 marked IRI's 25th year and a new "V8 Engine" in CoSort. Using just 6 Sun 12K
CPUs, CoSort sorted 2.4GB in 39 seconds, and with just 4 CPUs on an IBM p690, CoSort
sorted 1GB in 12 seconds. To serve its rapidly growing base of data warehouse architects,
CoSort 8 introduced a new API call for the "sortcl_routine", support for click-stream data
types and web log metadata, plus markup language formatting in SortCL for web reporting.
Support was announced for Linux and HP-UX on Itanium, and for Linux on IBM zSeries
mainframes.

In 2004, IRI enhanced both CoSort's transformation performance and its "point solutions"
for its cross-platform users. The Fast Extract (FACT) product was introduced to rapidly
unload Oracle tables and build metadata for instant ETL flows through CoSort's SortCL
(transformation and reporting engine) and SQL*Loader. That year IRI also "YES!"-certified
CoSort for SUSE Linux (SLES) 9 through Novell, and for use on IBM's 64-bit Power5
processor running AIX 5.3. In 2005, IRI released CoSort v8.2, and a robust test data
generator and custom file synthesizer based on SortCL called RowGen. That year IRI made
CoSort "Red Hat Ready" for Enterprise Linux, and released versions for Solaris 10 on x86,
FreeBSD 5.3, and the then latest Unix, Linux and Windows platforms. In 2006, IRI updated
its exclusive sort plug-ins for IBM's DataStage and Informatica's PowerCenter ETL suites,

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 48

and partnered with Meta Integration Technology to automatically convert file layouts in ETL
and BI tool repositories to SortCL and RowGen data definition files. IRI continued to expand
its base of resellers and expert consultants around the world, and worked hard to enhance
the CoSort, FACT, and RowGen tool sets.

The year 2007 marked the start of the CoSort Version 9 era and a major expansion of
functionality and services for solution architects, IT managers, compliance officers, and
application developers. In addition to its already combined file processing and presentation
(manipulation and reporting) functionality, CoSort's SortCL tool uniquely integrated field-
level protections for sensitive files, plus safe test data generation and custom
transformations -- all into that same job script and I/O pass. Also introduced as unique
features were: built-in processing and cross-conversion support for multi-byte data and file
types, including Shift-JIS, Big 5, Unicode, ISAM, LDIF, and XML; multi-file joins and
dimensional lookups; and, integrated Perl Compatible Regular Expression (PCRE) logic. In
2008, RowGen v2 went into general release for the creation of massive, safe, and intelligent
table and flat-file test sets. IRI also introduced more spin-offs from SortCL, including a
unique data encryption and masking tool called FieldShield, and a file-format and data-type
conversion tool called NextForm.

In 2009, IRI released improvements to FieldShield and NextForm, and began work on
another significant upgrade in CoSort functionality and ergonomics. Released in 2011,
CoSort v9.5 can source and target data in relational databases, convert between Unicode
and native multi-byte Asian character sets, recognize endianness at the field level, and
handle more date and mainframe numeric data types. The new "CoSort Workbench" is an
Eclipse plug-in with wizards for job creation, metadata discovery and conversion, and job
tuning. The IDE also features a syntax-aware editor for SortCL scripting, and components
for database views, version control, and remote execution.

With CoSort 9 and its adjunct tools and connectors, IRI has delivered both standalone
solutions and seamless accelerators for high-volume data warehousing, business
intelligence, and data security. Please subscribe to our newsletter for more details on the
“innovative routines” available today, and those you can expect next.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 49

http://iri.us1.list-manage1.com/subscribe?u=1fbf74d03874a65766de76cf4&id=57a3b48c56

INNOVATIVE ROUTINES INTERNATIONAL (IRI), INC.
Suite 303, Atlantis Center

2194 Highway A1A
Melbourne, FL 32937-4932 USA

Phone +1 321-777-8889
http: / /www.iri.com

Trademarks: CoSort and FieldShield are registered trademarks of Innovative Routines International (IRI), Inc.
FACT, NextForm, RowGen, SortCL and SortI are trademarks of IRI, Inc. All other brand or product names are, or
may be trademarks, or registered trademarks, of their respective holders/companies.

Copyright 2011 IRI, Inc. All Rights Reserved CoSort Version 9.5 Overview Booklet 50

	INPUT Record length 0 (variable (default)) / fixed #: 0
	CoSort Version 9.5
	AN INTRODUCTION TO COSORT
	Data Processing
	Data Presentation
	Data Protection
	Data Prototyping

	COSORT APPLICATIONS
	COMPATIBLE APPLICATIONS
	BI Dashboard

	COSORT CONTENTS
	SORT CONTROL LANGUAGE PROGRAM (SORTCL)
	Filter
	Segment
	Sort
	Merge
	Join
	Re-map
	Convert
	Aggregate
	Calculate
	Sub-string
	Validate
	Sequence
	Lookup
	Protect
	Report
	Transform
	Log
	SortCL Operations
	Trading Summary

	COSORT WORKBENCH
	SORTCL COMMAND SET
	Note that each command may contain additional parameters that expand its functionality. For example, the /JOIN ONLY command will eliminate the inner join results of a full outer join. Note also that many external functions can be invoked beyond the command set. For example, 256 AES encryption and de-identification functions, as well as set file lookups, are specified as functions within /FIELD statements.

	METADATA CONVERSION TOOLS
	About SortCL Metadata
	Third-Party Metadata
	Sort Program Conversions

	UNIX SORT REPLACEMENT (BIN/SORT)
	SORT INTERACTIVE PROGRAM (SORTI)
	COBOL MIGRATION TOOLS
	Sorting and Migrating COBOL Data
	Accelerating Native Sort Calls
	Sorting and Converting Index, Variable Length & Blocked Files
	Generating Reports
	Protecting Sensitive Data
	Creating Safe COBOL Test Data
	Auditing Data and Applications

	APPLICATION PROGRAMMING INTERFACES (APIs)
	Integrating Sort/Merge Operations Only
	Integrating Multiple Transformation Functions

	SYSTEM TUNING
	Threads
	Memory Allocation
	Block Size
	Overflow Storage

	Pause / Resume

	TECHNICAL SPECIFICATIONS
	Installation
	Invocation
	Ease of Use
	Resource Control
	Input and Output
	Record Selection and Grouping
	Sort Key Processing
	Record Reformatting
	Field Reformatting/Validation
	Record Summarization

	LICENSING INFORMATION
	COMPANY BACKGROUND

